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ASSESSMENT OF LOW-FLOW WATER QUALITY IN THE DU PAGE RIVER, ILLINOIS

By W. O. Freeman, A. R. Schmidt, and J. K. Stamer

ABSTRACT

Relations between several stream processes and concentrations of
dissolved oxygen and other constituents were evaluated for a 70.3-mile reach
of the Du Page River in northeastern Illinois, by comparing measured data with
computer-simulated data. Measurements, made during periods of low flow, were
used to calibrate and verify the QUAL-~II one-dimensional, steady-state, water-
quality model (Southeast Michigan Council of Governments' version). Equations
for prediction of reaeration rates and traveltimes were developed from values
that were measured using a steady-state, gas tracer technique. Water samples
were collected from the river and known inflows during two 24-hour (diel)
periods in July and August 1983 and analyzed for up to 60 constituents.

Diel dissolved-oxygen concentrations in the East Branch Du Page River
were as low as 0.9 milligram per liter. During the two diel periods, the
lower 8 miles of the East Branch had low dissolved-oxygen concentrations.
Maximum diel dissolved-oxygen concentrations throughout this subreach were
seldom above the State's minimum standard of 5 milligrams per liter. Model
simulations indicated that, although ammonia oxidation played a role in
dissolved-oxygen depletion, the most important factor in this subreach was
sediment oxygen demand. In the East Branch, the maximum total iron concentra-
tion was 4,099 micrograms per liter compared to the State standard of 1,000
micrograms per liter, and the maximum total dissolved-solids concentration was
1,440 milligrams per liter compared to the State standard of 1,000 milligrams
per liter. The maximum ammonia concentration for the two diel periods was
8.0 milligrams per liter as nitrogen, and the pH and water temperature of the
stream were such that the calculated un-ionized ammonia concentration exceeded
the State general use water-quality standard of 0.04 milligram per liter at
three sites during both periods. Wastewater treatment facility effluent was
the major input of ammonia to the river during these low~flow periods.

Some subreaches of the West Branch and the Main Stem Du Page River had
dissolved-oxygen concentrations as low as 2.1 milligrams per liter, but unlike
the East Branch, this was only for a short period during the day. Model simu-
lations indicated this was caused by inflows with low dissolved-oxygen concen-
trations and by algal respiration. High total dissolved-solids concentrations
(maximum 1,190 milligrams per liter) were measured at most sites along the
West Branch and Main Stem. Ammonia concentrations in the West Branch and Main
Stem were very low; the maximum concentration was 1.0 milligram per liter as
nitrogen. High iron concentrations (up to 2,175 micrograms per liter) were
measured in samples from the upper West Branch.



INTRODUCTION

Many areas in Illinois have had an increase in population and urban
development since the late 1960's and early 1970's. Growth and development
invariably have an impact on nearby rivers. Good management plans are impor-
tant for the protection of these surface-water resources. In 1976, the U.S.
General Accounting Office noted that there is an urgent need for resource
assessments in most river basins in the United States (Comptroller General,
1976). Because of the many possible management strategies available, it is
important to assess the probable impact of each in order to choose the appro-
priate ones. A better understanding of the chemical, physical, and biological
interactions which control the quality of the river is needed to determine the
impact of these various management strategies. Accurate and complete water-
quality data are required to aid in river management. The U.S. Geological
Survey (Survey) was urged to perform intensive river-quality assessments by
the U.S. General Accounting Office in 1981 (Comptroller General, 1981).
River-quality assessments, a major thrust of the Survey, are described by Velz
(1976) as the "science and art of identifying significant resource problems,
defining them with relevant data, and developing methods for evaluating the
impacts of planning alternatives on each specific problem." The best approach
to implement this involves describing stream processes using a computer model
and then using the model to explore cause and effect relations in the stream.

The Illinois Environmental Protection Agency (IEPA) has the primary
responsibility for reviewing water-quality standards and suggesting point-
source discharge limits needed to achieve those standards in Illinois waters.
This report is the result of a cooperative study by the Survey and the IEPA
describing the low-flow water quality of the Du Page River and calibrating and
verifying a model to be used by the IEPA in evaluating management strategies
for the basin. Some of the goals of the Federal-State cooperative water-
resources program are to collect the data needed to evaluate the quantity,
quality, and use of water resources in the United States, and to identify the
availability and the physical, chemical, and biological characteristics of
surface and ground water through analytical and interpretative investigations.
This report helps to fulfill these goals and thus provides some of the
necessary information for the best use and management of the Nation's water
resources.

Purpose and Scope

The purpose of this report is to describe the water quality of the
Du Page River during low-flow periods; to identify the river subreaches where
State water-quality standards are not met; to identify environmental factors
in those reaches which contribute to water-quality degradation; and to use a
mathematical model to aid in understanding how present or modified management
actions affect water quality.









Table 1.--Data-collection sites

[Ssite numbers correspond to those in figure 2 of this report]

River
mile
Site Station above
No. No. mouth Station name and location

1 05540138 23.67 East Branch Du Page River at Bloomingdale
wastewater treatment facility at
Bloomingdale
Lat: 41°56'18" TLong: 88°03'43"

2 05540143 22.07 East Branch Du Page River at Fullerton Avenue
near Addison
Lat: 41°55'05" ZLong: 88°03'09"

3 05540147 121.46 Armitage Ditch at Glendale Heights wastewater
treatment facility near Lombard
Lat: 41°54'40" Long: 88°03'07"

4 05540150 19.95 East Branch Du Page River at Glen Ellyn
Lat: 41°53'25" Long: 88°03'04"

5 05540153 18.50 East Branch Du Page River at Hill Avenue at
Lombard
Lat: 41°53'00" Long: 88°02'11"

6 05540156 16.92 East Branch Du Page River at Roosevelt Road at
Glen Ellyn
Lat: 41°51'35" Long: 88°02'44"

7 05540160 14.78 East Branch Du Page River near Downers Grove
Lat: 41°49'54" 1long: 88°02'51"

8 05540170 13.06 East Branch Du Page River at Morton Arboretum
at Lisle
Lat: 41°49'00" Long: 88°04"'19"

9 05540210 11.66 East Branch Du Page River at Route 34 Bridge at
Lisle
Lat: 41°48'02" Long: 88°04'53"

10 05540230 10.64 East Branch Du Page River at Lisle
Lat: 41°47'09" Long: 88°04'45"

11 05540235 10.08 East Branch Du Page River at 59th Street at

Lisle
Lat: 41°46'40" Long: 88°04'43"



Table 1.--Data-collection sites=--Continued

River
mile
Site Station above
No. No. mouth Station name and location

12 05540242 8.72 East Branch Du Page River at Hobson Road near
Lisle
Lat: 41°45'33" 1Long: 88°04'21"

13 05540245 7.99 East Branch Du Page River at 75th Street near
Lisle
Lat: 41°44'58" 1Long: 88°04'13"

14 05540247 17.39 Crabtree Creek at Woodridge wastewater treat-
ment facility near Lisle
Lat: 41°44'34" Long: 88°04' 14"

15 05540250 5.59 East Branch Du Page River at Barbers Corners
Lat: 41°43'05" 1Long: 88°04'14"

16 05540255 4.39 East Branch Du Page River at gravel pit near
Barbers Corners
Lat: 41°42'45" 1long: 88°05'21"

17 05540260 1.60 East Branch Du Page River near Naperville
Lat: 41°42'40" Long: 88°07'41"

18 05540263 0.02 East Branch Du Page River near mouth near
Naperville
Lat: 41°42'08" Long: 88°08'50"

19 05539855 58.64 West Branch Du Page River at Metropolitan
Sanitary District of Greater Chicago
Hanover Park wastewater treatment
facility at Hanover Park
Lat: 42°00'02" Long: 88°08'10"

20 05539860 58.58 West Branch Du Page River at Walnut Avenue at
Hanover Park
Lat: 41°59'58" Long: 88°08'11"

21 05539865 57.83 West Branch Du Page River at Hanover Park
Lat: 41°59'22" 1Long: 88°08'03"

22 05539875 55.42 West Branch Du Page River at Jefferson Street

near Hanover Park
Lat: 41°58'00" 1Long: 88°09'07"



Table 1.--Data-collection sites--Continued

River
mile
Site Station above
No. No. mouth Station name and location

23 05539890 51.76 West Branch Du Page River near Wayne
Lat: 41°56'31" Long: 88°10'51"

24 05539900 49.19 West Branch Du Page River near West Chicago
Lat: 41°54'39" TLong: 88°10'44"

25 05539960 247.05 Klein Creek at County Farm Road near Carol
Stream
Lat: 41°53'55" Long: 88°09'03"

26 05539980 46.98 West Branch Du Page River at Geneva Road at
Winfield
Lat: 41°53'13" Long: 88°09'34"

27 05540005 45.55 West Branch Du Page River at Beecher Road at
Winfield
Lat: 41°52'10" Long: 88°09'48"

28 05540066 41.41 West Branch Du Page River at Mack Road near
West Chicago
Lat: 41°50'33" Long: 88°11'56"

29 05540092 39.81 Spring Brook at Morris Court at Warrenville
Lat: 41°49'52" Long: 88°11'08"

-- 05540095 38.90 West Branch Du Page River near Warrenville (not
a data-collection site)
Lat: 41°49'22" Long: 88°10'23"

30 05540100 38.81 West Branch Du Page River at Warrenville
Lat: 41°49'03" Long: 88°10'16"

31 05540117 36.87 West Branch Du Page River at McDowell Grove at
Naperville
Lat: 41°47'45" Long: 88°11'15"

32 05540120 35.65 West Branch Du Page River at Naperville
Lat: 41°46'54" Long: 88°10'30"

33 05540123 33.33 West Branch Du Page River at Hillside Road at

Naperville
Lat: 41°45'57" ©Long: 88°08'51"



Table 1.--pData-collection sites--Continued

River
mile
Map Station above
No. No. mouth Station name and location
34 05540126 31.57 West Branch Du Page River at 75th Street at
Naperville
Lat: 41°44'55" Long: 88°07'45"
35 05540130 29.50 West Branch Du Page River near Naperville
Lat: 41°43'13" Long: 88°07'55"
36 05540135 27.86 West Branch Du Page River near mouth near
Naperville
Lat: 41°42'08" Long: 88°08'51"
37 05540290 26.25 Du Page River near Naperville
Lat: 41°41'24" Long: 88°09'58"
38 05540304 23.05 Du Page River at 127th Street near Plainfield
Lat: 41°39'07" Long: 88°10'53"
39 05540325 19.93 Du Page River at State Route 59 at Plainfield
Lat: 41°37'01" Long: 88°12'11"
40 05540340 15.26 Du Page River at State Route 59 near Plainfield
Lat: 41°34'16" Long: 88°12'04"
41 05540400 14.56 Lily Cache Creek near Plainfield
Lat: 41°35'14" Long: 88°10'40"
42 05540480 12.00 Du Page River at Black Road at Shorewood
Lat: 41°32'10" Long: 88°10'54"
- 05540500 10.60 Du Page River at Shorewood (Not a data collec-
tion site)
Lat: 41°31'20" Long: 88°11'35"
43 05539945 247.05 Klein Creek at Thunderbird Terrace at Carol
Stream
Lat: 41°54'37" Long: 88°07'46"
44 05540023 245.10 Winfield Creek at Summit Drive at Winfield
Lat: 41°52'01" Long: 88°09'44"
45 05540027 244.06 Wetlands Lake at Barnes Avenue at West Chicago
Lat: 41°52'18" Long: 88°10'43"
46 05540063 241.80 Kress Creek at State Route 59 near West Chicago

Lat: 41°51'12" Long: 88°12'08"



Table 1.--Data-collection sites-~Continued

River
mile
Site Station above
No. No. mouth Station name and location
47 05540085 239.81 Spring Brook at Wheaton wastewater treatment
facility at Wheaton
Lat: 41°50'49" Long: 88°08'29"
48 05540115 236.80 Ferry Creek at McDowell Grove at Naperville
Lat: 41°47'55" Long: 88°11'07"
49 05540146 121.46 Armitage Ditch at Armitage Avenue near Lombard
Lat: 41°54'40" Long: 88°03'17"
50 05540165 l14.60 Lacey Creek at Lacey Road at Downers Grove
Lat: 41°48'58" Long: 88°01'47"
51 05540205 111.90 St. Joseph Creek at Dumoulin Avenue at Lisle
Lat: 41°48'06" Long: 88°04'49"
52 05540225 l11.50 Rott Creek near Short Street at Lisle
Lat: 41°47'39" Long: 88°05'06"
53 05540240 lg9.60 Prentiss Creek near Lisle
Lat: 41°46'47" Long: 88°04'11"
54 05540280 227.10 Spring Brook near Naperville
Lat: 41°42'29" Long: 88°10'01"
55 05540294 225.50 Clow Creek at Book Road near Plainfield
Lat: 41°41'11" Long: 88°11710"
56 05540302 223.70 Wolf Creek at Book Road near Plainfield
Lat: 41°39'50" Long: 88°11'06"
57 05540320 220.20 West Norman Drain at Plainfield
Lat: 41°37'20" Long: 88°12'09"
58 05540353 214.56 Lily Cache Creek at Briar Cliff Road near

Barbers Corners
Lat: 41°41'54" Long: 88°04'28"

1 River miles

the mouth

2 River miles

the mouth

indicate the location of the mouth of the tributary above
of the East Branch Du Page River.

indicate the location of the mouth of the tributary above
of the Du Page River.
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DATA COLLECTION

Data requirements for modeling stream quality include traveltimes,
reaeration-rate coefficients, stream discharges, BOD, and various chemical
constituent concentrations.

Channel and streamflow characteristics, atmospheric reaeration rates, and
chemical-quality measurements were made on the Du Page River for low-flow
periods from July to September 1983. Traveltimes and reaeration-rate coeffi-
cients were determined at various flow rates throughout the study period. Two
diel studies at different low-flow conditions were done on July 18-19 and on
August 8-9. Chlorophyll-a concentrations, BOD, and the chemical constituent
concentrations were determined from samples collected at 79 sites during the
diel studies. These sites included 21 WWTF outfalls, 21 tributary sites, and
37 river sites (fig. 2). Field measurements of pH, specific conductance, DO,
stage, and air and water temperatures were also made at these sites.

There are 25 WWTFs that discharge to the Du Page River or its tributaries,
serving a population of approximately 379,300 (U.S. Census Bureau, 1980). Four
of the 25 WWTFs were not monitored (Glen Ellen Heights, Bolingbrook No. 2,
Farmingdale, and Shorewood) because the plant outfall was outside the study
area or because it discharged an insignificant volume compared to the volume
of streamflow at the point of discharge. Most of the WWIFs that were monitored
use some form of advanced treatment (table 3).

streamflow and Channel Characteristics

Streamflow was measured at 103 sites several times from June to September
1983. Reference points were established and stage-discharge relations were
developed for the low-flow range of discharge at 31 of the 37 river sites using
the methods described by Rantz and others (1982). Discharge at the time of
sampling was estimated by measuring the stream stage and using the low-flow
stage-discharge relations. Discharges from WWTFs were furnished from flow
charts maintained by the WWTF; for those WWTFs without daily discharge records,
monthly averages, as provided to the IEPA, were used.
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Channel cross—-sectional area and width were measured directly using the
methods described by Rantz and others (1982). These measurements were made as
part of the discharge measurements. The locations of the measuring sites were
chosen to provide the best measurement of discharge. Average channel depth
was calculated by assuming the stream channel was rectangular and dividing
cross—-sectional area by width.

Traveltime and Reaeration-Rate Coefficients

Traveltime refers to the period of time it takes for water or waterborne
materials to move from one point to another in a stream (Hubbard and others,
1982). Reaeration rate refers to the rate at which oxygen is absorbed from
the atmosphere by the stream (Rathbun and Grant, 1978). The 70.3-mile study
reach of the river was divided into 64 subreaches based on estimates of
traveltimes and reaeration rates, and on accessibility. Selection of river
subreaches used in the traveltime - reaeration-rate studies was based on the
criterion that the product of the propane desorption rate and traveltime equal
one. This minimizes the errors introduced in the gas tracer technique
described by Yotsukura and others (1983). Traveltimes and reaeration-rate
coefficients were measured simultaneously using a steady-state version of the
gas tracer technique (Yotsukura and others, 1983). Traveltimes and reaeration
rates were measured once for 55 subreaches and twice for 5 subreaches. Several
attempts were made to measure the traveltimes and reaeration rates for the four
uppermost subreaches of the East Branch, but all of these attempts were inter-
rupted by heavy rains, and subsequently, these four subreaches, totaling 5.2
river miles, were not modeled.

The gas~tracer technique for determining reaeration-rate coefficients is
based on the constant relation between the rate at which a tracer gas desorbs
from water and the rate at which oxygen is absorbed from or desorbed to the
atmosphere by the water. This relation has been studied by using laboratory
tank tests, and the technique has been used to measure rates of gas loss over
stream reaches (Rathbun and Grant, 1978). The steady-state version of this
method uses a steady gas-injection rate to produce a concentration of gas
which remains constant over time at a given downstream location, but which
decreases with distance downstream from the injection site. The reaeration
rates of the Du Page River were determined using propane gas that was steadily
injected through porous diffuser plates for approximately the total traveltime
of the subreach being measured.

The propane-~gas injection was accompanied by a slug injection of
Rhodamine WT, a fluorescent red dye. The dye was injected using a 6~ to
8-foot section of 4-inch diameter polyvinyl chloride pipe that had both ends
pPlugged and large holes along one side of its entire length. The pipe was
filled with a mixture of dye and water and then dumped as quickly and evenly
as possible across the center of flow of the river to approximate an instan-
taneous line injection. The stream was then sampled for gas and dye at two or
three sites downstream from the injection site. These sample sites were far
enough downstream from the injection site to assume complete lateral and ver-
tical mixing of both gas and dye based on the equations discussed by Hubbard
and others (1982). The quantities of gas and dye injected were determined
using the methods described by Rathbun (1979).
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Fluorometers were used in the field to detect the arrival of the dye
cloud, the peak dye concentration, and the passing of the dye cloud. As many
as 65 samples were collected to define the dye-concentration curves for each
site. These samples were later reanalyzed in the laboratory to provide a more
stable and controlled environment for operation of the fluorometers, thereby
providing for more accurate results.

Four to eight water samples were collected at 20-minute intervals for
propane analysis. The samples were collected relative to the dye cloud to
insure that concentrations of propane in the samples were at or near their
plateau and that nearly the same parcel of water was sampled at each site.
Each sample was preserved with formalin and sent to the Survey laboratory in
Doraville, Georgia, for analysis. Gas chromatography was used to determine
the propane concentrations (Wershaw and others, 1983). Figure 3 shows an
example of the gas and dye results plotted for two consecutive sampling sites.

Accurate traveltimes for each subreach of the river are important in
modeling the water quality. The traveltime for each subreach of the river
was calculated as the time it took for the centroid of the dye cloud to pass
through a subreach. Traveltime was used to determine the average stream
velocity and the reaeration-rate coefficient for each subreach. The average
velocity was determined by dividing the subreach length by its traveltime.

Reaeration from the atmosphere is one of the primary mechanisms by which
the dissolved oxygen, consumed by the biological processes in the river, is
replenished. The reaeration-rate coefficient, calculated from the propane-
and dye-concentration data collected for each subreach, describes how quickly
this process occurs.

To calculate the reaeration-rate coefficient!, the propane desorption-
rate coefficient, K, is first calculated based on the mass of propane lost
from the subreach and the traveltime in that subreach. The equation used is
(Yotsukura and others, 1983)

CuQu
1
1“Cde)

ToT

Kp (1)

where Kp is the propane desorption-rate coefficient, in reciprocal days;
ToT is the traveltime for the subreach, in days;
C is the propane concentration at the given location;
Q is the stream discharge; and

u,d indicate location at upstream and downstream ends of the subreach,
respectively.

l A1l rate coefficients in this report are calculated using natural
logarithms (base e).
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The reaeration-rate coefficient (K;) is related to the propane desorption-rate
coefficient by the following equation (Rathbun, 1979):

Ko = 1.39 KP. (2)

The reaeration-rate coefficient was standardized to 20°C using the
following equation (Rathbun, 1979; Yotsukura and others, 1983):

k20 = kT (1.0241)(20°T) (3)
2 2
where Kgo is the reaeration-rate coefficient at 20°C, in reciprocal
days;
T

K is the reaeration-rate coefficient at T°C, in reciprocal
days; and

N

T is the water temperature, in degrees Celsius.

Water-Quality Characteristics

A 24-hour composite sample of effluent from each WWTF was collected daily
for 4 to 8 days before each diel study; the number depending on the estimated
traveltime from the WWTF outfall to the downstream end of the study reach.
These samples were used to identify any variations in effluent quality that
might affect the water quality of the river during the diel studies. An addi-
tional 24-hour composite sample was collected from each WWTF during the diel
studies, and four discrete samples of effluent (each 6 hours apart) were
collected at six of the larger WWTFs.

During the diel studies, water samples were collected every 4 hours from
37 sites on the Du Page River and from 5 sites on the tributaries that received
treated wastewater. Tributaries that did not receive treated wastewater (15
sites) and the outfall from Wetlands Lake which did contain treated wastewater,
were assumed to have a fairly constant water quality during low-flow periods
(fig. 2). These sites were sampled twice during each diel study; once in the
early morning (0300~0600 hours) and again in the late afternoon (1500-1800
hours) in order to measure chemical constituent concentrations and to estimate
the range of daily variations in the DO concentration. Water-quality field
measurements of specific conductance, DO concentration, pH, and temperature
were made using hand-held four-parameter monitors. These measurements, along
with air temperature, were made every 2 to 4 hours at all river sites and at
sites in the tributaries that received treated wastewater. Field measurements
were also made during the two visits to the other tributary sites and on each
visit to the WWTF outfalls.

Water and effluent samples were chilled with ice, transported to the IEPA
laboratory within 8 hours of being collected, and analyzed using IEPA labora-
tory methods (1986). Each water sample was analyzed to determine the con-
centrations of total organic plus ammonia nitrogen (total kjeldahl nitrogen),
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dissolved ammonia nitrogen, dissolved nitrite plus nitrate nitrogen, and dis~
solved and total phosphorus. Ultimate carbonaceous BOD and the decay rate were
determined for each of these samples, and total (nitrogenous plus carbonaceous)
BOD was also determined for selected samples. Ultimate carbonaceous BOD refers
to the total amount of DO used by heterotrophic microbes in oxidizing all of
the biologically oxidizable carbonaceous material in a specified volume. It
is expressed as milligrams DO consumed per liter of sample. The decay rate is
the rate at which the oxygen is consumed. Ultimate carbonaceous BOD and its
decay rate were determined using methods described by Stamer and others (1983).
This method involves incubating the samples in the dark at 20°C and periodi~
cally determining the amount of DO consumed. The ultimate carbonaceous BOD
and the decay rate are then calculated from this time~series data by using a
nonlinear least squares method. A small amount of nitrapyrin was added to
most of the BOD samples to inhibit nitrification. One sample from each site
was analyzed without nitrapyrin to measure the total (carbonaceous plus
nitrogenous) BOD. Total BOD simply refers to the DO depletion due to oxida-
tion of all of the biologically oxidizable material. Residual chlorine con-
centrations were measured in all BOD samples, and appropriate amounts of
sodium sulfite were added to neutralize the chlorine residual. All BOD
samples were then seeded using 1 milliliter of raw sewage obtained from the
Champaign, Illinois, Sewage Treatment Works, in order to introduce microbe
populations that may have been killed by the chlorine. The contribution of
BOD from the seed@ was negligible.

Two samples that were collected in the early morning and late afternoon
from each site, except at the WWTF sites, were analyzed for chlorophyll-a con-
centration. One sample from each site, including the WWIF sites, was analyzed
for 54 other constituents: turbidity; chemical oxygen demand; total alkalinity;
total acidity; total suspended solids; volatile suspended solids; total ammonia
nitrogen; total nitrite plus nitrate nitrogen; cyanide; hardness; chloride;
sulfate; fluoride; arsenic; fecal coliform; phenol; total dissolved solids;
mercury; and total and dissolved calcium, magnesium, sodium, potassium, lead,
manganese, nickel, silver, barium, boron, beryllium, cadmium, strontium, vana-
dium, zinc, chromium, copper, and iron.

Results of the water-quality analyses are available for inspection at the
Survey's Illinois District Office.

ASSESSMENT OF LOW-FLOW WATER QUALITY

Diel Water Quality

The Illinois Pollution Control Board establishes the water~guality stan-~
dards for the State of Illinois. The general-use water~quality standards,
which apply to the Du Page River and its tributaries, are intended to "protect
the State's water for aquatic life, agricultural use, primary and secondary
contact use, and most industrial uses and to ensure the aesthetic quality of
the State's aquatic environment"” (Pollution Control Board, 1984). The results
of the water-quality analyses on the samples collected at the 37 stream sites
on July 18-19 and on August 8-9, 1983, are presented in part in tables 12 and
13, at the end of this report. These results and their relation to applicable
water~quality standards are discussed here.
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The State standard for DO declares that during at least 16 hours of any
24~hour period the DO concentration must be 6.0 milligrams per liter (mg/L) or
greater, and the concentration may never be less than 5.0 mg/L (Pollution
Control Board, 1984). DO concentrations can be affected by factors such as
BOD, SOD, reaeration, algal growth and respiration, and others. There is prob-
ably no place in the river where DO is not affected by one or more of these
factors. The QUAL-II water-quality model was used to determine which of these
factors had the largest impact on the DO concentrations in several subreaches
of the river. A second method was used to identify those sites where algae
caused DO concentrations to fall below the State standard. This method
required the assumption that the diel fluctuation in DO concentration was
caused by plant photosynthesis and respiration. 1In this method, the magnitude
of the change in DO concentration between the time-weighted average con-
centration and minimum concentration measured at a site was compared to the
magnitude of the change between the DO saturation concentration and the State
minimum standard of 5.0 mg/L (S. C. McCutcheon, U.S. Geological Survey, written
commun., 1984). The DO saturation concentration for each site was determined
from the average water temperature at that site using the following equation
{Thomann, 1972):

Cg = 14.652 - 0.41022 T + 0.007991 T2 - 0.000077774 T3 (4)

where Cg is the oxygen saturation concentration at standard pressure
(29.92 inches of mercury), in milligrams per liter, and

T is the water temperature, in degrees Celsius.

If the magnitude of the measured DO change was larger than the magnitude of
the change calculated from the saturation concentration, then plant activity
was a major factor and the State minimum standard would probably have been
violated regardless of the effects of other factors such as BOD and SOD.

The DO concentrations in the East Branch Du Page River ranged from 1.5 to
12.2 mg/L during the July diel study and from 0.9 to 14.2 mg/L during the
August diel study. Site 6 was the only site in the East Branch where plant
activity was the primary cause of the DO standard being violated. Algal
activity was the dominant factor at the site during both the July and August
diel studies.

Site 2 was in a short riverine section within a small wetlands area of
the East Branch, and site 4 was downstream of the wetlands area. Both of
these sites had DO concentrations consistently below 6.0 mg/L and, except for
one measurement in August at site 2, concentrations were all below 5.0 mg/L.
Algal activity did not appear to be an important factor at these sites. The
DO concentrations between sites 6 and 13 in the East Branch fluctuated around
6.0 mg/L, and during the July diel study, minimum concentrations in this sub-
reach often fell below 5.0 mg/L. The data-collection sites downstream of site
13 in the East Branch had DO concentrations that were always below 6.0 mg/L
and almost always below 5.0 mg/L during both diel studies. This subreach of
the East Branch from about RM 8.0 (site 13) to the mouth was, in terms of DO,
the most critical subreach of the Du Page River system.
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DO concentrations in the West Branch and Main Stem Du Page River ranged
from 3.3 to 14.3 mg/L during the July diel study and from 2.1 to 29.3 mg/L
during the August diel study. DO concentrations were generally greater than
5.0 mg/L throughout the West Branch and Main Stem, and, in most cases, con-
centrations were above 6.0 mg/L for a long enough period of each diel study to
comply with the State DO standard. During the July diel study, DO concentra-
tions fell below 5.0 mg/L at sites 22, 23, 24, 28, 31, 37, and 38. Site 38
was the only one of these sites where algal activity was the primary cause of
the State standard violation.

During the August diel study, DO concentrations in the West Branch and
Main Stem fell below 5.0 mg/L at sites 22, 26, 28, 31, 35, 36, 37, 38, and 39.
Of these, all sites except 22 and 26 showed algae to be the dominant factor
indicating that DO concentrations would have fallen below 5.0 mg/L regardless
of the impact of other factors such as BOD and SOD. Site 37 is just down-
stream from the confluence of the East and West Branches of the Du Page River.
In addition to the effects of algae, low DO concentrations at this site were
caused in part by the inflow of water with low DO from the East Branch.
Although there are several sites where the State DO standard is not met, the
water quality in terms of DO, in the West Branch and Main Stem is much better
than that of the East Branch.

The State general-use water-quality standard for pH specifies that it
should be between 6.5 and 9.0 except for natural causes (Pollution Control
Board, 1984). The pH in the East Branch Du Page River ranged from 6.4 to 8.6
during the July diel study and from 6.2 to 8.4 during the August diel study.
The pH dropped below the State standard at site 6 during the July diel study
and at site 2 during the August diel study. The pH in the West Branch and
Main Stem ranged from 6.5 to 8.2 in July and from 7.1 to 8.6 during the August
diel study. These values were in compliance with the State standard.

The State general-use water-quality standard for total ammonia nitrogen
and un-ionized ammonia nitrogen specifies that the total ammonia-nitrogen
concentration must be less than or equal to 15.0 mg/L. If the total ammonia-
nitrogen concentration is between 1.5 and 15.0 mg/L, the un-ionized ammonia-
nitrogen concentration must be less than or equal to 0.04 mg/L. Total
ammonia-nitrogen concentrations less than 1.5 mg/L are considered lawful
regardless of the corresponding un-~ionized ammonia-nitrogen concentrations
(Pollution Control Board, 1984). Total (unfiltered) ammonia-nitrogen concen-
trations were determined from one sample at each site. Total ammonia-nitrogen
concentrations in the West Branch and Main Stem were never greater than 1.5
mg/L. The total ammonia-nitrogen concentrations in the East Branch ranged
from 0.10 to 8.0 mg/L and from 0.29 to 5.1 mg/L during the July and August
diel studies, respectively. The un-ionized ammonia-nitrogen concentrations
were calculated using measured pH and water temperatures with this egquation
(Pollution Control Board, 1984):

u = N (5)
(0.94412(1 + 10%) + 0.0559)

2729.92 (6)

0.09018 + t5—1573.76) ~ FH

X
"
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where u is the concentration of un-ionized ammonia nitrogen, in
milligrams per liter;

N is the concentration of ammonia nitrogen, in milligrams
per liter; and

T is the water temperature, in degrees Celsius.

The results of these calculations indicated that sites 1, 2, and 4 were
not in compliance with the State standard for un-ionized ammonia during the
July diel study and that sites 1, 4, and 16 were not in compliance during the

August diel study.

Dissolved phosphorus and dissolved nitrite- plus nitrate-nitrogen concen-
trations were measured in the Du Page River although there are no State stan-
dards that apply to these constituents. However, these constituents are of
concern as nutrients for algal growth. The concentrations of inorganic
phosphorus and inorganic nitrogen needed to promote algal growth are 0.01 and
0.3 mg/L, respectively (Sawyer, 1952; Muller, 1953). These constituents are
present in large enough concentrations to propogate algal growth in the Du Page
River with the exception of site 2 during the August diel study and sites 5 and
6 during both diel studies. At these sites, nitrite- plus nitrate-nitrogen
concentrations fell below 0.3 mg/L. Although phosphorus concentrations at
site 6 were above 0.01 mg/L, they were low enough to reduce the algal growth
rate. Site 2 is located in a wetlands area of the East Branch where large
macrophyte populations reduced nutrient concentrations. Sites 5 and 6 are
downstream of a small reservoir where chlorophyll-a concentrations were high
and detention times long enough for algal growth to reduce the nutrient con-
centrations to growth-limiting levels.

Site 6 (RM 16.92) was previously discussed as being the only site on the
East Branch where algal activity was the dominant factor causing DO concentra-
tions to fall below 5.0 mg/L. DO concentrations were high enough to indicate
that mutrient concentrations large enough to promote algal growth were present.
The supposition is that nutrients contributed by a small unmeasured outflow
from a construction site around RM 18.5 were enough to promote algal growth.
This algal growth then reduced nutrient concentrations to growth-limiting
levels farther downstream. Concentrations of chlorophyll-a from the upstream
reservoir were high enough that a small increase in nutrient concentration
could cause a surge in algal growth.

The State general-use water-quality standard for total dissolved solids
specifies that concentrations shall not be greater than 1,000 mg/L (Pollution
Control Board, 1984). Total dissolved solids in the East Branch ranged from
784 to 1,440 mg/L during the July diel study and from 940 to 1,440 mg/L during
the August diel study. Concentrations exceeded the State standard throughout
most of the East Branch except at sites 1, 2, 4, and 5 during the July diel
study and at sites 1 and 2 during the Auqust diel study.

Total dissolved solids in the West Branch and Main Stem Du Page River
ranged from 744 to 1,190 mg/L and from 932 to 1,180 mg/L during the July and
August diel studies, respectively. The State standard was exceeded at sites
31, 32, 33, 34, 35, 36, and 38 during the July diel study and at all sites
except 19, 22, 24, and 27 during the August diel study.
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The concentrations of total dissolved solids from the measured inflows
were used in conjunction with the discharge measured at these point sources to
determine dilution factors and calculate corresponding stream concentrations.
These calculated concentrations assumed that the headwaters and point sources
were the only contributing factors to stream concentrations and that total
dissolved solids was a conservative constituent. Calculated concentrations
were compared with measured stream concentrations to determine if the point
sources could account for the total dissolved solids present.

Figures 4 and 5 show that the measured concentrations were somewhat
variable and that the levels and trends of the measured and calculated total
dissolved solids were somewhat comparable. This indicates that point sources
are probably a major factor in the total dissolved-solids concentrations and
that other factors such as sediment interactions may also play an important
role.

Total iron concentrations measured in the East Branch ranged from 80 to
2,400 micrograms per liter (ug/L) during the July diel study and from 61 to
4,100 ug/L during the August diel study. Total iron concentrations measured
in the West Branch and Main Stem ranged from 64 to 1,800 ug/L and from 16 to
1,700 ug/L during the July and August diel studies, respectively. These con-
centrations exceeded the State standard of 1,000 ug/L throughout much of the
river. 1Iron concentrations were calculated from the contributions of the
headwaters and point sources and were then compared to the measured iron con-
centrations (figs. 6 and 7). Measured concentrations were fairly consistently
higher than the calculated concentrations in the East Branch and West Branch
Du Page River, but the concentrations were comparable in the Main Stem. These
results indicate that point sources are not the major cause of high iron con-
centrations in the river. Sediment interactions, chemical release, and non-
point sources may help to account for the iron in the river.

Fluoride concentrations in the East Branch and Main Stem Du Page River
were well below the State standard of 1.4 mg/L during both diel studies.
Fluoride concentrations exceeded the State standard in the West Branch at
sites 19, 20, and 21 during the July diel study and at sites 27 and 28 during
the Augqust diel study. Figures 8 and 9 show comparisons of the measured
fluoride concentrations and the concentrations calculated from the headwaters
and point-source contributions for the East Branch and the West Branch and
Main Stem, respectively. The concentrations were generally comparable indi-
cating that the point sources were the primary factor controlling fluoride
concentrations. There was an exception at sites 19 and 20 in the West Branch
during the July diel study. Measured concentrations at these sites were much
higher than the calculated concentrations indicating that some factor such as
an unmeasured point or nonpoint source was controlling the concentrations.

All other constituents that were measured during the two diel studies

were within the limits specified by the applicable State general-use water-
guality standards.
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Water-Quality Modeling

The QUAL-II, one-dimensional, steady-state, water-quality model (National
Council of the Paper Industry for Air and Stream Improvement, 1982) was used
because it is capable of modeling up to 13 water-quality constituents, includ-
ing algae (modeled as chlorophyll-a). For this study, the QUAL-II model was
used to evaluate nine water-quality characteristics: DO, ultimate carbona=
ceous BOD, SOD, algae as chlorophyll-a, ammonia, nitrite, nitrate, phosphorus,
and specific conductance. Figure 10 shows the constituents and their interac-
tions in the QUAL-II model. Water samples were analyzed for nitrite plus
nitrate nitrogen to avoid the problem of possible concentration changes due to
oxidation during transport to the laboratory. To compensate for this in the
model, a high nitrite oxidation rate was used so that nitrite plus nitrate
nitrogen was simulated rather than the separate constituents.

The QUAL-II model assumes stream discharge at any point approximates
steady-state flow conditions. However, during low-flow periods in the Du Page
River, a large part of the streamflow is comprised of wastewater discharges,
which vary within a day. Nevertheless, average flow variations during the
July and Augqust diel studies were 12 and 8 percent, respectively. This
variability was considered small enough to satisfy the QUAL-II model's assump-
tion of steady-state flow.

The QUAL-II model represents the 65.1-mile reach of the river that was
modeled as a series of subreaches. These subreaches are referred to as model
subreaches in this report. Model subreaches were further subdivided into com-
putational elements which define the shortest river length that the QUAL-IT
model considers for its calculations. The mathematical basis for QUAL-II is
given in the model user's gquide (National Council of the Paper Industry for
Air and Stream Improvement, 1982). '

The 65.1-mile reach of the Du Page River that was modeled was divided into
two sections. A schematic of the two sections as they were modeled is shown in
figure 11. The West Branch and Main Stem model represents the entire West
Branch and the Main Stem Du Page River from Rm 58.7 down to RM 12.1. Thirty
model subreaches with 19 point sources (including the East Branch) and one
point withdrawal (labeled Golf Course Withdrawal on fig. 11) were specified.
The computational element length was specified at 0.2 mile.

The East Branch model represents the East Branch Du Page River from RM
18.9 to RM 0.0. The upper 5.2-mile subreach was not modeled because data were
not available to accurately simulate water quality through the reservoir and
wetlands area within that subreach. Seventeen model subreaches with 11 point
sources were specified. The computational element length was specified at 0.1
mile.

Computing Model Requirements from Field Data

Data from the Auqust diel study were used to calibrate the QUAL-II model
because flow conditions were much lower than during the July diel study. Data
from the July diel study were used to verify the model by validating the
choice of calibration coefficients under different hydrologic and waste-load
conditions.
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Traveltimes and reaeration-rate coefficients for the two diel periods
were determined by using multivariate regression on measurements made at
different discharges. Traveltime and reaeration-rate measurements were made
for mean daily stream discharges at the Survey gaging station at Shorewood
(05540500), ranging from 104 to 411 ft3/s. These discharges encompass those
measured during the July and August diel studies of 229 and 124 ft3/s, respec-
tively.

Two equations which relate traveltime to flow characteristics were
developed to predict traveltimes for the diel-study conditions. The best
equation incorporating data from all subreaches of the river was

(7)
QO.SS

TOT = (61.04)

where TOT is the traveltime in the subreach, in seconds;

A is the average cross-sectional area of the subreach, in square
feet;

L is the subreach length, in feet; and

O is the average discharge in the subreach, in cubic feet per
second.

The multiple correlation coefficient of the equation-estimated traveltimes,
when compared with the observed traveltimes, is 0.70. The relation has an
associated standard error of either +43.3 or =30.2 percent.

The best equation developed using data from only those reaches which did
not contain any inflows, dams, or lakes is

TOT = 3,325 + 1.67 L + 65.06 Q (8)

where all the variables are as defined in equation 7. This equation has an
associated multiple correlation coefficient for estimated versus observed
traveltimes of 0.76, and a standard error of 3,283 seconds. Traveltime in
each river subreach was predicted from these equations.

The reaeration-rate coefficients were measured during periods of flow that
were different from those of the diel studies. Several of the subreaches have
inflows, lakes, or dams that can affect DO and reaeration without affecting the
channel and flow characteristics. Measured reaeration-rate coefficients were
used in the model for three model subreaches containing low-head dams. Aan
equation was developed to estimate the reaeration-rate coefficients for the
remaining subreaches of the river, based on known discharge and channel charac-
teristics for each subreach. The parameters considered for inclusion in this
equation were average discharge, average cross—-sectional area, average surface
width, channel slope, and reach length. These parameters were selected because
they were known for both the traveltime and reaeration-rate studies, as well as
the diel studies. A review of the literature shows the parameters are used in
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many existing reaeration-rate equations. The best equation was developed from
data from all but nine of the subreaches measured. The nine subreaches
omitted had suspected measurement errors, or physical features such as dams,
which could affect the reaeration-rate coefficient. The best fit equation was

K, = 282.0 x W0-35 g0.86 (9)

where Ky is the reaeration-rate coefficient at 20°C, in reciprocal days;
W is the average surface width, in feet; and

S is the bed slope for the subreach.

To test the validity of equation 9, measured coefficients (K,) were com-
pared with coefficients estimated by 17 other reaeration-rate coefficient
equations (0O'Connor and Dobbins, 1958; Churchill and others, 1962 (2 equa-
tions); Krenkel and Orlob, 1963; Owens and others, 1964; Langbein and Durum,
1967; Cadwallader and McDonnell, 1969; Thackston and Krenkel, 1969; Velz, 1970;
Padden and Gloyna, 1971; Bennett and Rathbun, 1972 (2 equations); Lau, 1972;
Parkhurst and Pomeroy, 1972; Tsivoglou and Wallace, 1972; Bansal, 1973; and
Tsivoglou and Neal, 1976). The estimated wvalues using the equation developed
for the Du Page River (eq. 9) had the best agreement with the measured values,
based on a multiple correlation coefficient of 0.70 and a standard error of 64
and 39 percent. Multiple correlation coefficients ranged from 0.39 to 0.60
when the 17 other equations were used to estimate Kj.

Average cross-sectional area, surface width, depth, and discharge for
each subreach were determined from an average of the values measured at the
two sites that define the subreach boundaries. As discussed previously, the
surface width and cross-sectional area were measured at each site, and average
depths were calculated from the width and cross-sectional area measurements
assuming a rectangular channel.

Coefficients and rate constants used in the model must be defined for
each of the model subreaches. The subreaches defined by the sites sampled
during the traveltime and reaeration-rate studies did not always correspond to
the model subreaches, and it was necessary to adjust some of the data to fit
these model subreaches.

Traveltimes corresponding to the flow conditions observed during the diel
studies were estimated using equations 7 and 8. Equation 7 was used for those
subreaches containing inflows, lakes, and dams, and equation 8 was used for all
other subreaches. Reaeration-rate coefficients were estimated using equation
9. The field data and reaeration-rate coefficients were used directly if the
model subreach was entirely within a single diel subreach. If not, then the
field data often had to be averaged so that the data would correspond to the
model subreaches. A weighted average of the diel subreach coefficients was
used when a model subreach contained portions of, or more than, one diel
subreach. The weights used in calculating these averages were the percent of
the model subreach included in each diel subreach.
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Calibration, Verification and Sensitivity

The QUAL-II model was used to simulate environmental processes and water
quality of the Du Page River. The processes and their interactions (fig. 10)
are defined in the model by several rate constants and coefficients. These
constants and coefficients were specified to best describe the processes in
the Du Page River. Model calibration was accomplished by using calculated and
measured values for the coefficients when available, and adjusting the other
coefficients within ranges described by Zison and others (1978) and by the
QUAL-IT user's manual (National Council of the Paper Industry for Air and
Stream Improvement, 1982) until the model-simulated constituent concentrations
approximated the measured concentrations. The August diel study conditions
and data were used to calibrate the model.

The rate constants and coefficients determined from the model calibration
were then used in conjunction with the July diel-study conditions and data to
validate that choice of coefficients. This model verification showed how well
the calibration coefficients defined the processes in the Du Page River by
identifying the model's ability to simulate the water quality under different
hydrologic and waste-load conditions. Conditions of the July diel study were
significantly different from those of the August diel study, thus providing
for good model verification. Tables 4 and 5 list several of the rate constants
and coefficients used to verify the East Branch and the West Branch and Main
Stem models.

The stream discharge measured during both the July and August diel studies
very nearly matched that determined by summing the discharge measured from the
headwaters and each of the point sources during the respective studies.

Because of this, the measured discharge of the headwaters and point sources
were used directly in the model. As discussed previously, the East Branch
model does not include the upper 5.2 river miles of the East Branch Du Page
River. Therefore, the average discharge measured at site 5 was specified as
the headwaters in the model.

Some additional inflow to the model-simulated stream discharge was neces-
sary to account for unmeasured point or nonpoint sources. This forced the
simulated discharge to match that measured in the river during the respective
diel studies. In the East Branch model, a total of 1.12 ft3/s was equally
divided and added to the streamflow over the subreaches from RM 18.9 to RM
14.2 to match the August diel study conditions. This constituted only 5 per-
cent of the flow measured at RM 14.2. For the July diel study conditions,
12.0 ft3/s was divided equally among the model subreaches from RM 9.8 to the
mouth, constituting 18 percent of the total flow. Incremental inflow in the
West Branch and Main Stem model for the August diel study conditions was added
over two sections of the modeled river; 1.94 ft3/s was added over the sub-~
reaches from RM 58.7 to RM 55.5 and 4.56 ft3/s was added over the subreaches
from RM 36.9 to RM 31.1. These constituted 15 and 12 percent, respectively,
of the flow. For the July diel study conditions, a total of 27.72 ft3/s was
added over the model subreaches from RM 58.7 to RM 27.9 constituting 20 per-
cent of the flow.
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The water-quality characteristics for these incremental inflows were
specified in the model using an average of the water quality measured in all
of the tributaries that did not contain treated wastewater. The water-quality
characteristics for the headwaters and point sources were specified as an
average of the values measured for each. Tables 6, 7, 8, and 9 show lists of
the water-quality characteristics for the headwaters, point sources, and
incremental inflows used in the East Branch and the West Branch and Main Stem
models for both diel studies.

The QUAL-II model determines stream depth and velocity for each model
subreach by multiplying the stream discharge by a coefficient for depth and a
coefficient for velocity. The velocities determined from subreach length and
traveltime and the stream depths determined from cross-sectional area and width
measurements were used in the model by choosing coefficients of discharge that
forced the model to simulate measured values.

The capability of the model to simulate a conservative constituent is
helpful in identifying the accuracy of the model-simulated streamflow and how
well the point sources are accounted for. Conservative constituents are not
affected by biological decay or most other interactions in the river. Simula-
tion of a conservative constituent will identify incorrect stream discharge in
the model by showing too much or too little dilution of the point sources.
These inaccuracies would show up as calculated concentrations that are lower
or higher than the measured concentrations. A jump in the measured concentra-
tion that is not shown by the simulated concentrations can also indicate an
unmeasured point or nonpoint source.

Specific conductance is a relatively conservative constituent and was
modeled as such for this study. Figures 12 and 13 show profiles of the simu-
lated and measured specific conductance in the East Branch model and the West
Branch and Main Stem model, respectively. Simulated specific conductance in
the East Branch very closely approximated the measured values; thus, the
streamflow and point sources were accurately simulated in the East Branch
model. The measured specific conductances at RM 16.9 during the July diel
study were higher than those simulated. This was very likely due to an
unmeasured point or nonpoint source, but the values were close enough to con-
sider this as being insignificant.

The simulated specific conductance in the West Branch and Main Stem
approximated the measured conductances fairly well. The conductance values
measured between RM 49.2 and RM 41.4 were consistently higher than the simu-
lated values, and the measured specific conductance values from RM 23.1 to the
end of the study reach (RM 12.0) were consistently lower than the simulated
values. This could indicate that streamflow was inaccurately simulated.
However, the simulated flow almost exactly matches the average measured flow.
The variations between measured and simulated conductances could also be
attributable to unmeasured point or nonpoint sources. Since the Du Page River
system contains so many point sources of highly variable water quality, the
difference between simulated and measured specific conductance can be con-
sidered of minor significance. Assuming this would indicate that the
streamflow and point sources for the West Branch and Main Stem were fairly
accurately simulated.
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Figure 12.--Profiles of simulated and measured specific
conductance in the East Branch Du Page River
for the July and August diel studies.

46



2000 T T T i 1

0

Lud

m 1800 » JUly 18 and 19 ]

= O Measured

= —— Simulated

& 1600 | =

@)

95 1400

o

)

& 1200

=

=

n

O 1000

0

Q

=

Z

o]

Z 2000 T T T T T

5

oD 1800

Qa

=z

S 1600

Q

& 1400

| August 8 and 9

o

7] 1200 O Measured _
i — Simulated

1000 1 1 | i 1

60 52 44 36 28 20 12
RIVER MILES ABOVE MOUTH

Figure 13.--Profiles of simulated and measured specific
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Ultimate carbonaceous BOD was calibrated by varying the settling/scour
rate coefficient (a negative rate indicates scour) that caused the model to
simulate concentrations of carbonaceous BOD within the ranges measured during
the August diel study (figs. 14 and 15). The BOD settling/scour rate coef-
ficients for the East Branch model ranged from -0.36 to 1.96 reciprocal days.
These rate coefficients for the East Branch model were validated by the car-
bonaceous BOD concentrations simulated using the July diel study conditions.
The BOD settling/scour rate coefficients for the West Branch and Main Stem
model ranged from -0.96 to -0.16 reciprocal days. The results of the model
verification using the July diel conditions indicated that the coefficients
were fairly well validated from the headwaters down to RM 38.8 but that the
coefficients were not valid from RM 38.8 to the end of the study reach (RM
12.0). One possible factor for the inaccuracy is that the river contained
more algae {as chlorophyll-a) during the Augqust study. During the BOD analy-
sis, samples were incubated in the dark. Algae will die during these pro-
longed periods of darkness and the dead algae can contribute significantly to
the BOD. It is possible that the measured BOD values, especially in BAugust,
were artifically high because of this effect. By calibrating to the artifi-
cially high BOD concentrations in August, the model overestimated the BOD in
July, when algal concentrations were lower. Simulations were done to deter-
mine how sensitive the model was to BOD using a +/-20 percent change in head-
waters and point source ultimate carbonaceous BOD concentrations. DO, the
constituent of primary interest, showed a maximum change of 0.09 mg/L for both
the East Branch and the West Branch and Main Stem models. The results indi-
cated that the model was very insensitive to changes in BOD.

Large diel fluctuations in DO suggest that photosynthesis and respiration
were important factors in the water quality of the Du Page River, especially
in the West Branch and Main Stem during the August diel study. A limitation
of the QUAL-II model is that it simulates only the phytoplankton or free-
floating portion of the photosynthetic organisms (simulated as chlorophyll-a).
The Du Page River had large populations of macrophytes and periphyton in addi-
tion to the phytoplankton population. All of these plants had an effect on
the DO and nutrient (nitrite plus nitrate nitrogen and phosphorus) concentra-
tions of the river. Accurate simulation of the water quality of the Du Page
River required that the effects of these plants were accounted for. Measure-
ments of the plants or their effects were not made, but the effects of the
plants were modeled within the constraints of the model. This was done with
available data by adjusting some of the coefficients governing algal concen-
tration in the model. Algal concentrations were adjusted to calibrate the
simulated with the measured nitrite- plus nitrate-nitrogen concentrations.

The nitrite- plus nitrate-nitrogen concentrations are affected by the oxida-
tion rates of ammonia to nitrite, and nitrite to nitrate, as well as by algal
growth (fig. 10).

Due to the fact that the model was calibrated for the plant community by
using nitrite~ plus nitrate-nitrogen concentrations, this calibration depended
somewhat on the oxidation rates of ammonia and nitrite. Sensitivity analyses
were performed on these oxidation rates by comparing simulations that used the
extremes of the ranges suggested by Zison and others (1978). Results of these
and other model sensitivity analyses are summarized in tables 10 and 11. The
suggested range for the oxidation rate of ammonia is 0.1 to 0.5 reciprocal
days, and the sensitivity results with this range showed a maximum change in
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Figure 14.--Profiles of simulated and measured ultimate carbonaceous
biochemical oxygen demand in the East Branch Du Page
River for the July and August diel studies.
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Table 10.--Sensitivity analyses showing maximum changes in constituent concentrations in the
East Branch model from simulations using ranges in values of model coefficients

(mg/L, milligrams per liter; ug/L, micrograms per liter]

Nitrite
plus
Dissolved nitrate Ammonia
oxygen Chlorophyll-a nitrogen nitrogen Phosphorus
Change in coefficients (mg/L) (ug/L) (mg/L) (mg/L) (mg/L)

Reaeration-rate coefficients
decreased 39 percent from 2.76 0.00 0.00 0.00 0.00
the calculated values.

increased 64 pexcent from 2.23 .00 .00 +00 .00
the calculated values.

Traveltimes
decreased 30.2 percent or 21.04 719.01 4.33 1.06 «57

3,283 seconds from the
calculated values. *

increased 43.3 percent or 3.38 512.40 .83 11 .14
3,283 seconds from the
calculated values. *

Ammonia oxidation rate
range from 0.1 to 0.5 1.54 24.60 .95 1.06 .01
reciprocal days.

Nitrite oxidation rate
range from 0.2 to 10 .19 19.62 .73 .01 .01
reciprocal days.

Chloraphyll-a to algae ratio

range from 50 to 100 micrograms 3.38 13.51 .68 16 .09
chlorophyll-a per milligram
algae.

Nitrogen content of algae
range from 0.08 to 0.09 .06 2.95 .15 .04 .01
milligram nitrogen per
milligram algae.

Phosphorus content of algae
range from 0.012 to 0.015 .01 24 .01 .01 .04
milligram phosphorus per
milligram algae.

Oxygen production and uptake
per unit of algae photosynthesis 4.28 .00 .00 .00 .00
and respiration range from uptake
of 1.6 and production of 1.8 to
an uptake of 2.3 and production
of 1.4 milligrams oxygen.

* Model subreaches without dams, lakes, or inflows were changed by +/-3,283 seconds.
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Table 11.-=Sensitivity analyses showing maximum changes in constituent concentrations in the
West Branch and Main Stem model from simulations using ranges in values of model coefficients

[milligrams per liter; ug/L, micrograms per liter]

Nitrite
plus
Dissolved nitrate Ammonia
oxygen Chlorophyll-a nitrogen nitrogen Phosphorus
Change in coefficients (mg/L) (ug/L) (mg/L) (mg/L) (mg/L)

Reaeration-rate coefficients
decreased 39 percent from 1.78 0.00 0.00 0.00 0.00
the calculated values.

increased 64 percent from 1.40 .00 .00 .00 .00
the calculated values.

Traveltimes
decreased 30.2 percent or 22.88 853.20 8.41 2.02 1.10

3283 seconds from the
calculated values. *

increased 43.3 percent or 8.85 660.20 3.46 61 .45
3283 seconds from the
calculated values. *

Ammonia oxidation rate
range from 0.1 to 0.5 22 9.22 21 .24 .01
reciprocal days.

Nitrite oxidation rate
range from 0.2 to 10 .04 4.73 .15 .01 .01
reciprocal days.

Chloraphyll-a to algae ratio

range from 50 to 100 micrograms 5.74 986.40 2.33 .41 .30
chlorophyll-a per milligram
algae.

Nitrogen content of algae
range from 0.08 to 0.09 .00 .00 .00 .00 .00
milligram nitrogen per
milligram algae.

Phosphorus content of algae
range from 0.012 to 0.015 =10 13.73 .04 .01 .13
milligram phosphorus per
milligram algae.

Oxygen production and uptake
per unit of algae photosynthesis 6.32 .00 .00 .00 .00
and respiration range from uptake
of 1.6 and production of 1.8 to
an uptake of 2.3 and production
of 1.4 milligrams oxygen.

* Model subreaches without dams, lakes, or inflows were changed by +/-3,283 seconds.
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nitrite plus nitrate nitrogen of 0.95 mg/L for the East Branch model and 0.21
mg/L for the West Branch and Main Stem model. The results of this sensitivity
analysis also showed a maximum change in DO of 1.54 mg/L for the East Branch
and 0.22 mg/L for the West Branch and Main Stem models. The results indicated
that the West Branch and Main Stem model was very insensitive to changes in
the ammonia oxidation rate, due to the fact that ammonia concentrations in the
West Branch and Main Stem were very low. The East Branch model was much more
sensitive to changes in this rate because of the higher ammonia concentrations
that were present. Because measurements of the ammonia oxidation rate were
not made, and the East Branch model was somewhat sensitive to this rate
constant, the oxidation rate of ammonia to nitrite was specified as 0.3
reciprocal day, the median of the range suggested by Zison and others (1978).

Sensitivity analyses were also performed for the oxidation rate of
nitrite to nitrate using the extremes of the range (0.2 to 10 reciprocal days)
suggested by Zison and others (1978). These results showed a maximum change
in nitrate nitrogen of 0.73 mg/L for the East Branch model and 0.15 mg/L for
the West Branch and Main Stem model. The effect of changes in the nitrite
oxidation rate on DO was negligible. These results indicate that the model
was insensitive to changes in this rate constant. The nitrite-oxidation rate
was specified as 10.0 reciprocal days because nitrite-oxidation rates are
typically high and nitrite-nitrogen concentrations are typically low (Zison
and others, 1978). The model, with a nitrite-oxidation rate of 10.0 recipro-
cal days, essentially simulated nitrite plus nitrate nitrogen, and the model
results could be compared with the measured concentrations of nitrite plus
nitrate nitrogen.

Assuming these oxidation rates were accurate, the next phase in calibrat-
ing the model for the plant community was to specify the coefficients that
govern algal growth rates and concentrations. The QUAL-II model simulates
algal activity using the following equations (National Council of the Paper
Industry for Air and Stream Improvement, 1982):

Chla = qoA (10)

where Chla is the chlorophyll-a concentration, in micrograms per liter;

ag is the ratio of chlorophyll-a, in micrograms, to algal
biomass, in milligrams; and

A is the algal biomass concentration, in milligrams per liter.

dA _ g1
It - HA pA —EA (11)

where t is time, in days;
p is the local algal specific growth rate, in reciprocal days;
p is the local algal respiration rate, in reciprocal days;
01 is the local algal settling rate, in feet per day; and

H is the average depth, in feet.
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Ns3 P 1 Ky, + L'
—_— 1ln ———
N3 + X, P+ K, M K, + L'e

U = u max - )H (12)

where g max is the maximum algal specific growth rate, in reciprocal days;

N3 is the local concentration of nitrate nitrogen, in milligrams
per liter;

P is the local concentration of phosphorus, in milligrams per
liter;
K, and KP are empirical half saturation constants for nitrogen (n) and
phosphorus (p), in milligrams per liter;

A is the light extinction coefficient, in reciprocal feet;

L' is the local intensity of light, in langleys per minute; and

Ky, is the empirical half saturation constant for light, in
langleys per minute.

The ratio of chlorophyll-a to algal biomass (a,) is important in determin-
ing the contribution of algae from the measured point sources. The suggested
range for this ratio is 50 to 100 micrograms per milligram (National Council
of the Paper Industry for Air and Stream Improvement, 1982). Model simulations
using the extremes of this range showed significant changes in all the modeled
constituent concentrations. Attempts were made to measure this ratio, but the
reliability of these measurements is questionable because of interferences
from suspended sediments and zooplankton. The measurements indicated ratios
were in the range of 2 to 10 micrograms of chlorophyll-a per milligram of bio-
mass. The ratio used in the model was specified at 50 micrograms per milligram,
which is about the median between the maximum suggested value and the measured
values, yet still within the suggested range. No attempt was made to calibrate
the model to approximate the measured chlorophyll-a concentrations; rather, the
model was calibrated to represent the entire plant community in the Du Page
River. 1In doing so, simulated chlorophyll-a concentrations were often higher
than the concentrations measured for only the phytoplankton portion of the
community.

Plants utilize nitrogen and phosphorus as nutrients for growth and
release these nutrients upon death through decomposition. Figure 10 indicates
these interactions as they were modeled with the QUAL~-II model. The nitrogen
content of algae can range from 0.08 to 0.09 milligrams (mg) nitrogen per
milligram algae. The range for the phosphorus content of algae is 0.012 to
0.015 mg phosphorus per milligram algae (National Council of the Paper Industry
for Air and Stream Improvement, 1982). Simulations using the extremes of these
ranges showed that the model was insensitive to these coefficients. Subse-
quently, the coefficients were specified as 0.09 mg nitrogen per milligram
algae and 0.015 mg phosphorus per milligram algae. The emperical half-
saturation constants for nitrogen, phosphorus, and light (K, Kp, and KL) were
specified as 0.3 mg/L, 0.04 mg/L, and 0.03 langleys per minute, respectively,
which were the medians of the suggested ranges (National Council of the Paper
Industry for Air and Stream Improvement, 1982).
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Algal respiration rates (p) can range from 0.05 to 0.50 reciprocal day
(National Council of the Paper Industry for Air and Stream Improvement, 1982),
and algal maximum specific growth rates (u max) can range from 0.2 to 8.0 recip-
rocal days (Zison and others, 1978). A limitation of the QUAL-II model is that
these rates are specified for the entire model rather than the model subreaches
and thus cannot be varied relative to the varieties of plants present in each
subreach. The algal respiration rate was specified as 0.5 reciprocal day for
both the East Branch model and the West Branch and Main Stem model. The algal
maximum specific growth rate was specified as 4.5 reciprocal days for the East
Branch model and as 5.0 reciprocal days for the West Branch and Main Stem
model. These values were chosen from preliminary model simulations of DO and
nutrient concentrations. The values were maintained throughout the remaining
model calibration.

Zison and others (1978) describe algal settling rates as being highly
variable, and they suggest that the rate coefficients (Y1) can range from
negative values, indicating a source of algae, to a maximum of about 6.6 feet
per day (ft/d), indicating algal sink or loss. The algal settling-rate coef-
ficients were specified for each model subreach and used as the primary means
of calibrating the model to simulate the plant communities in the Du Page
River. The specified algal settling rate coefficients ranged from -6.0 to 1.0
ft/d for the East Branch model and from -12.0 to 4.5 ft/d for the West Branch
and Main Stem model.

The light extinction coefficient (A) can range from 0.03 reciprocal foot
in very clear water, to 0.9 reciprocal foot in very turbid water (Zison and
others, 1978). Values were specified for each model subreach and ranged from
0.10 to 0.90 reciprocal foot in the East Branch model and from 0.07 to 0.90
reciprocal foot in the West Branch and Main Stem model. The light extinction
coefficients were chosen in conjunction with the algal settling rate coef-
ficients to best account for the growth rates and algal concentrations needed
to simulate the plant communities. These coefficients were varied until the
model~simulated nitrite- plus nitrate-nitrogen concentrations approximated the
concentrations measured during the August diel study.

Figqures 16 and 17 show profiles of the simulated and measured nitrite-
plus nitrate-nitrogen concentrations in the East Branch model and the West
Branch and Main Stem model, respectively. As discussed previously, the
nitrite- plus nitrate-nitrogen concentrations were used as an indicator of how
well the model accounts for the plant community in the river. The results of
the simulations with the July diel-study data and conditions indicate that the
coefficients chosen in calibrating the model to the August diel conditions
were valid since the model accurately simulated nitrite- plus nitrate-nitrogen
concentrations in the Du Page River under differing hydrologic and waste-
loading conditions. Because nitrite plus nitrate concentrations are primarily
affected by algal growth, the verification also indicates that the plant com-
munity is accurately simulated.

Ammonia-nitrogen and phosphorus concentrations were calibrated by adjust-
ing their respective source/sink rates until the simulated concentrations
approximated the concentrations measured in August (a negative rate indicates
a sink). The source/sink coefficients used in the models (tables 4 and 5) are
fairly well validated by the July simulations (figs. 18, 19, 20, and 21).
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Figure 16.--Profiles of simulated and measured nitrite- plus nitrate-
nitrogen concentrations in the East Branch Du Page River
for the July and August diel studies.
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Ammonia concentrations in the West Branch and Main Stem were so low that accu-
rate simulations were not possible without increasing the number of subreaches
modeled, thereby reducing the subreach length over which the source/sink rates
are specified. Since the analytical detection limit for ammonia is 0.1 mg/L,
concentrations below the detection limit indicate measured concentrations of
less than 0.1 mg/L. To account for these concentrations in the model, they
have been assigned a value of 0.1 mg/L.

The most important and complex constituent modeled was DO. Figure 10
shows which factors can affect the DO concentration in the QUAL~-II model. The
model simulates DO using the following equation (National Council of the Paper
Industry for Air and Stream Improvement, 1982):

[s!
E%-= Ky(0*=0) + Al(agu=agp)=(KqL)=(Ks/A )=(agB4Nq)=(agByNy) (13)
where 0 1is the concentration of DO, in milligrams per 1liter;

0* is the saturation concentration of dissolved oxygen at the local
temperature and pressure, in milligrams per liter;

K¢ is the carbonaceous BOD decay rate, in reciprocal days;
Ky is the reaeration-rate coefficient, in reciprocal days;

K4 is the sediment oxygen demand rate, in milligrams per foot per
day;

a3 is the rate of oxygen production per unit of algal growth, in
milligram oxygen per milligram algae;

is the rate of oxygen uptake per unit of algal respiration, in
milligram oxygen per milligram algae;

Qg is the rate of oxygen uptake per unit of ammonia oxidation, in
milligram oxygen per milligram of ammonia nitrogen;

% is the rate of oxygen uptake per unit of nitrite oxidation, in
milligram oxygen per milligram nitrite nitrogen;
B4 is the ammonia oxidation rate constant, in reciprocal days;

By is the nitrite oxidation rate constant, in reciprocal days;

is the algae concentration, in milligrams per liter;

is the average cross-sectional area, in feet squared;

is the local specific growth rate of algae, in reciprocal days;

A

A

H

p 1is the local respiration rate of algae, in reciprocal days;
L is the ultimate carbonaceous BOD, in milligrams per liter;
N

1 is the concentration of ammonia nitrogen, in milligrams per
liter; and

N, is the concentration of nitrite nitrogen, in milligrams per
liter.
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Measured values of the carbonaceous BOD decay rate coefficient (K4) were
specified for each model subreach. The reaeration-rate coefficients (K;) were
determined from equation 9 except for West Branch and Main Stem model sub-
reaches 12, 14, and 15 where measured values were used because these subreaches
contained low-head dams.

The rate of oxygen uptake for both the ammonia (ag) and nitrite (ag)
oxidation reactions were specified as the stoichiometric equivalent amounts
necessary to balance the chemical reactions. The oxygen uptake rates were
specified as 3.43 mg oxygen per milligram ammonia nitrogen oxidized to nitrite,
and 1.14 mg oxygen per milligram nitrite nitrogen oxidized to nitrate (Zison
and others, 1978).

Oxygen production per unit of algal growth (a3) can range from 1.4 to 1.8
mg oxygen per milligram algae. Oxygen uptake per unit of algal respiration
(a4) can range from 1.6 to 2.3 mg oxygen per milligram algae (National Council
for the Paper Industry on Air and Stream Improvement, 1982). The sensitivity
of the model to these coefficient ranges was tested by comparing a simulation
using the maximum of the oxygen production and the minimum of the uptake with
a simulation using the minimum production and the maximum uptake rates.
Comparison of these simulations showed a significant impact on the DO concen-
trations for both the East Branch and the West Branch and Main Stem models.
Because of the models' sensitivity to these rates, the median values of 1.6 mg
oxygen per milligram algae for the oxygen production rate and 1.95 mg oxygen
per milligram algae for the oxygen uptake rate were specified in the model.

The SOD rate (K4) was used for calibrating the DO in the model. SOD rate
coefficients can be highly variable depending on the amounts of biologically
oxidizable material in the sediments. Often these rates are very site specific
and can differ even in a cross section of the stream. The SOD rate coeffi-
cients were specified such that the model simulated DO concentrations approxi-
mated the measured DO concentrations. SOD coefficients specified for the East
Branch model ranged from 1,500 to 105,000 mg oxygen per foot per day. The SOD
coefficients for the West Branch and Main Stem model ranged from 0 to 55,000
mg oxygen per foot per day. These coefficients are dependent on the average
width of the subreach, and to obtain comparable values, the coefficients were
divided by the average width of their respective model subreach. The resulting
ranges then became 66 to 2,625 mg oxygen per square foot per day and 0 to 2,040
mg oxygen per square foot per day for the East Branch and the West Branch and
Main Stem models, respectively. Simulated SOD rates are high in several sub-
reaches of the river, including the critical subreaches of the East Branch
(from RM 8.0 down to its mouth). To observe the effects of SOD on DO, a simu-
lation with SOD rates reduced by 20 percent was performed (fig. 22). It is
apparent from this simulation that SOD is a major factor in the DO depletion
in the model and that the model is sensitive to SOD changes.

Figures 23 and 24 show profiles of simulated and measured dissolved oxy-
gen for the East Branch model and the West Branch and Main Stem model, respec-
tively. The Augqust calibration coefficients are well validated by the July
simulations. The East Branch July simulated concentrations are slightly high,
around RM 10.0 to RM 14.0, but simulated and measured concentrations nearly
match through the critical subreaches of the river (RM 8.0 to RM 0.0). As
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discussed previously, the section of the East Branch from around RM 8.0 to its
mouth has the most severe water-quality problems, especially in terms of DO,
of the entire Du Page River study reach.

The July simulations with the West Branch and Main Stem model also closely
match the measured DO concentrations. The simulated and measured concentra-
tions for the July verification almost match from RM 24.0 to RM 12.0 while the
calibrated concentrations in August do not. This is because SOD throughout
these subreaches is zero, and the August simulated DO concentrations are as
high as they will go without requiring changes in some other model parameter.

As discussed previously, equations were developed to predict the travel-
times (egs. 7 and 8) and the reaeration-rate coefficients (eq. 9) for the
model. Model simulations using plus and minus the standard error of these
equations were performed for both of these parameters. The resulting constit-
uent concentrations were then compared with the simulation concentrations
determined from the equation-predicted coefficient values (tables 10 and 11).
Although the model is somewhat sensitive to the reaeration-rate coefficients,
a change of one standard error did not significantly improve DO concentrations
in the critical subreaches of the East Branch. The model is very sensitive to
changes in traveltimes, especially decreases. A decrease of one standard
error caused an increase in DO concentration of more than 20 mg/L in both the
East Branch and the West Branch and Main Stem models. This large change in DO
was caused by an increase in the model-generated chlorophyll-a concentration.
It is apparent then, that incorrect traveltimes could have a significant
impact on the modeled water quality. The traveltimes used in these models are
our best estimates using equations 7 and 8 based on field measurements made
from June through September 1983.

Every attempt was made to use the most reasonable and accurate coeffi-
cients for model calibration. It is important to note, however, that due to
the many interrelated factors affecting constituent concentrations in the
model, some coefficients may be in error, with that error compensated by other
related coefficients. Nevertheless, July verification results indicate that
the combination of model coefficients used are valid, and the model can simu-
late low-flow water quality in the Du Page River for different hydrologic and
waste~loading conditions.

Simulations Using Alternative Conditions

Alternative waste-load conditions were imposed on the model to demonstrate
the model's use as a tool to predict the effect of different management strate-
gies. The output from the simulation was compared with that from the cali-
brated model to evaluate the impact of changing waste loads.

One simulated condition was to restrict all WWTF effluents to a maximum
ammonia concentration of 1.5 mg/L. Most of the WWTF effluents were already
near or below this concentration of ammonia so this simulation resulted in
little change in the DO concentrations. It did, however, reduce ammonia con-
centrations below the State standard in subreaches where the standards were
not being met (figs. 25 and 26).
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BOD is often considered a major cause of low DO concentrations in a
stream. A second simulated condition restricted the ultimate carbonaceous BOD
in the WWTF effluents to 8.5 mg/L, a value at or below best practical treat-
ment levels. Limiting the carbonaceous BOD discharges had little or no effect
on the DO in either the East Branch or the West Branch and Main Stem models
(fig. 27).

The effects of carbonaceous BOD and ammonia oxidation on the DO concentra-
tion were small compared to the effects of SOD in the East Branch model and
algal activity in the West Branch and Main Stem model. These simulated con-
ditions indicated that carbonaceous BOD and ammonia oxidation are not major
causes of low DO concentrations in the Du Page River. This is probably be-
cause many of the WWIFs use treatment processes which significantly reduce the
effluent ammonia and carbonaceous BOD concentrations. Only in the critical
subreaches of the East Branch did ammonia oxidation have some effect on DO
concentrations.

The last set of simulated conditions used an average of the ammonia-
nitrogen and 5-day BOD effluent concentrations on record with the IEPA for the
years 1974 and 1975. There has been some consolidation of small WWTFs and
some improvements in their effluent quality over the years, so this is not an
accurate simulation of the water quality. This simulation indicates what the
water quality might have been if current (1983) volumes of effluent were
discharged with the 5-day BOD and ammonia=-nitrogen concentrations discharged
in 1974 and 1975. Five-day BOD values were converted to ultimate BODs using
the decay coefficients measured during the August diel study.

Figure 28 shows the DO results for this simulation. The results show
very little change in the water quality of the West Branch and Main Stem. The
results for the East Branch indicate that improvements in effluent quality
since 1974-75 have resulted in improved river water guality.

SUMMARY AND CONCLUSIONS

Several subreaches of the Du Page River where the water quality exceeded
the State general-use water-quality standards were identified. The East
Branch had more severe water-quality problems than the West Branch or Main
Sstem, especially in terms of DO concentrations. The lowest DO concentrations
were in the East Branch. Most of these low DO concentrations were in the
subreaches from RM 8.0 to the mouth of the East Branch. In these subreaches,
DO concentrations were all below 6.0 mg/L and most were below 5.0 mg/L during
both diel studies. Model simulations indicate that depletion of DO in these
subreaches is caused primarily by high SOD rates and also by the oxidation of
ammonia.

DO concentrations in the West Branch and Main Stem were in compliance
with the standard for a large portion of both diel-study periods, but at
several downstream sites concentrations at the minimum of the diel cycle fell
below the State minimum standard of 5.0 mg/L. The DO depletion at these sites
appeared to be caused by the combination of low DO downstream of the East
Branch and by oxygen consumption from algal respiration at night.
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Figure 27.--Profiles of predicted dissolved-oxygen concentrations
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Ammonia-nitrogen concentrations exceeded the standard at three sites in
the East Branch during both diel studies but were in compliance throughout the
rest of the river. WWTF effluents were the major source of these high ammonia
concentrations.

Total dissolved-solids concentrations exceeded the State standard of
1,000 mg/L throughout most of the East Branch and at many sites in the West
Branch and Main Stem during both diel studies. Mass balance calculations
indicated that the point sources were a major contributing factor to these
high concentrations.

Total iron concentrations during both diel studies exceeded the State
standard of 1,000 pug/L throughout most of the East and West Branches but did
not exceed the standard in the Main Stem. Mass balance calculations indicated
that point sources did not contribute signifiantly to these iron concentrations.

The only other measured chemical constituent that exceeded the State
standards was fluoride. Fluoride concentrations exceeded the State standard
of 1.4 mg/L at only a few locations in the West Branch and were in compliance
throughout the remainder of the Du Page River during both diel studies. Mass
balance calculations indicated that point sources were an important factor
contributing to these fluoride concentrations.

The QUAL~II one-dimensional, steady-state, water-quality model was
calibrated for both the East Branch and the West Branch and Main Stem of the
Du Page River using water-quality measurements made during a low-flow period
in August 1983. The model coefficients chosen by this calibration were then
verified by accurately simulating the water quality under different hydrologic
and wasteload conditions. This verification used water-quality measurements
made during a low-flow period in July 1983.

Simulated WWTF effluent quality conditions were imposed on the model to
predict the impact of different conditions on the water quality of the Du Page
River. The predicted water quality indicated that effluent quality improve-
ments since 1974 have had a beneficial impact in the East Branch and little
impact in the West Branch and Main Stem. These simulations also indicated
that further reduction in the effluent BOD concentrations will have neglible
impact on the DO concentrations of the Du Page River but that reduction of the
effluent ammonia concentrations in the East Branch could bring ammonia con-
centrations into compliance with the State water-quality standards and improve
DO concentrations in the downstream subreaches.
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